

Outline

- Radiatively Inefficient Accretion Models for Sgr A*
 - Boundary Conditions at Large Radii
 - Physical Conditions at Small Radii
 - Interpretation of the Observed Spectrum
- Gamma-rays from Sgr A* and the Central ~ Pc

Fuel Supply

IR (VLT) image of central ~ pc

Young cluster of massive stars in the central ~ pc loses ~ $10^{-3} \, \mathrm{M}_{\odot} \, \mathrm{yr}^{-1} \, (\approx 2\text{-}10" \, \mathrm{from \, BH})$

1" = $0.04 \text{ pc} \approx 10^5 \text{ R}_{\text{S}} @ \text{GC}$

Chandra image of central ~ 3 pc

Hot x-ray emitting gas produced via shocked stellar winds (n ~ 10-100 cm⁻³; T ~ keV)

Gravitational Capture of Ambient Gas (Bondi Accretion)

BH surrounded by gas with density _ and sound speed c_s

$$R_A \approx \frac{GM}{c_s^2} >> R_S$$

$$\dot{M}_{Bondi} \approx 4\pi R_A^2 \rho c_s$$

Estimates Give: $(R_{\Delta} \approx 10^5 R_{S} \approx 1")$

$$\dot{M} \approx 10^{-5} M_8 \, yr^{-1}$$

R_A determines the BHs gravitational sphere of influence

3D Hydro Simulations yield similar accretion rates and suggest the flow circularizes at ~ 103-104 R_S

(Coker & Melia 1997; Cuadra et al. 2005)

Arguments Against Accretion at smaller radii proceeding via an Optically Thick, Geometrically Thin Disk, as in Luminous AGN

 $L \sim 10^{36} \text{ ergs s}^{-1} \sim 10^{29} \text{ W} \sim 100 \text{ L}_{\square} \sim 10^{-9} \text{ L}_{\text{EDD}}$

1. inferred low efficiency

$$L_{obs} \approx 10^{-6} \dot{M}_{Bondi} c^2$$

2. where is the expected blackbody emission?

$$\dot{M}_{disk} < 10^{-10} M_8 \, yr^{-1}$$

- 3. observed gas on ~ 1" scales is primarily hot & spherical, with $t_{cool} >> t_{flow}$
- 4. absence of stellar eclipses argues against $\tau >> 1$ disk (Cuadra et al. 2003)

Radiatively Inefficient Accretion Flows

(e.g., Ichimaru 1977; Rees et al. 1984; Narayan & Yi 1994)

- At low densities (low accretion rates), cooling is inefficient
- Grav. Pot. Energy \Rightarrow Heat; not radiated $L << 0.1\dot{M}c^2$
- \Rightarrow very hot (collisionless) plasma: $T \sim GMm_p/3R_s \sim 10^{12} \text{ K}$

$$T_p \sim 10^{12} \text{ K}$$
 $T_e \sim 10^{11} \text{ K}$
(+ nonthermal tail)

Rotating w/ $\Omega \sim \Omega_K$ but geometrically "thick"

Global Accretion Simulations

Accretion flow is time-dependent, with large fluctuations in density, temperature, magnetic field strength, etc.

Global Accretion Simulations

Hawley & Balbus 2002

Accretion Rate

(Stone & Pringle 2001; Hawley & Balbus 2002; Igumenshchev et al. 2003)

Simulations indicate that very little of the available mass accretes onto the central object (both MHD & hydro sims w/\alpha viscosity)

$$\dot{M}_{BH} \sim \dot{M}_{Bondi} \frac{R_{in}}{R_{circ}} \sim 10^{-3} \, \dot{M}_{Bondi} \sim 10^{-8} \, \mathrm{M_8 \ yr^{-1}}$$

 Low accretion rate strongly suggested by linear polarization in the mm w/ RM < 10⁶ rad m⁻²

physical conditions near BH

 $T_p \sim 100 \text{ MeV} > T_e \sim 20 \text{ MeV}$ $n_e \sim 10^{6-7} \text{ cm}^{-3} \text{ B} \sim 30 \text{ G}$

Modeling the Spectrum of Sgr A*

mm: thermal synchrotron from ~ few R_s

IR: nonthermal synch (~ few-10 % of electrons in a power law tail)

Quiescent X-rays: thermal emission from ~ R_{Bondi}

X-ray Flares: synchrotron & SSC may both be present

IR & X-ray flares from transiently accelerated electrons in inner ~ few-10 R_s

Yuan et al. 2004

High Energy Gamma-rays from Sgr A*?

- π^0 decay: $L_{\gamma} \approx 10^{33} \text{n}_7^2 \left(\frac{T_p}{100 \text{ MeV}} \right)^3 \text{ ergs s}^{-1}$
 - low accretion rate \Rightarrow low density \Rightarrow low flux from π^0 decay

- IC from rel. e-s: uncertain, but ...
 - U_B \sim 10-100 U_{ph}: electrons primarily lose energy to synchrotron not IC
 - IR spectra generally steep, suggesting inefficient high γ accelerator

Shocked Stellar Winds: A Better Particle Accelerator?

 $\sim 10^{-3} \, \mathrm{M}_{\mathrm{\Pi}} \, \mathrm{yr}^{-1} \, \mathrm{lost}$ in the central 0.5 pc

Wind energy thermalized via collisionless shocks (as in SN, GRBs ...)

$$\dot{E}_{shocks} \approx 0.5 \dot{M}_w V_w^2 \approx 3 \cdot 10^{38} \dot{M}_{-3} V_8^2 \text{ ergs s}^{-1}$$

$$> \dot{E}_{acc} \approx 0.1 \dot{M}_{BH} c^2 \approx 5 \cdot 10^{37} \dot{M}_{-8} \text{ ergs s}^{-1}$$

~ 10% of energy to high γ protons ~ 1 % of energy to high γ electrons

$$n(\gamma) \propto \gamma^{-2}$$

TEV HESS Source & GLAST Counterpart: IC on the Stellar Radiation Field

Central PC

 $U_{ph} \sim 10^{-7} \text{ ergs cm}^{-3} \text{ in UV}$ $U_{ph} \sim 10^{-8} \text{ ergs cm}^{-3} \text{ in FIR}$

 $t_{cool} < t_{esc} \sim R/V_{wind}$ for $\gamma > 10^4$

Cooling Break

$$E_b \approx 2 \left(\frac{R_{0.5}V_8}{L_{41}}\right)^2 \left(\frac{E_{ph}}{5 \text{ eV}}\right) \text{GeV}$$

EQ & Avi Loeb

0.3% of shock energy into rel. electrons w/ $n(\gamma) \propto \gamma^{-2}$

Summary

- Accretion of Gas onto Sgr A* occurs via a hot low density radiatively inefficient accretion flow
 - true for most BHs, most of the time
- Highly variable emission from IR-X-rays signature of magnetized, turbulence accretion flow in inner few R_S
 - Efficiency of gamma-ray production uncertain (probably low)
- Electrons accelerated in stellar wind shocks in the central ~ parsec can account for HESS TeV source: predicts ~ GeV cooling break in GLAST band

Local (Shearing Box) Simulations of the MRI in a Collisionless Plasma

Saturation Levels Similar to MHD Simulations

Angular Momentum
Transport via
Anisotropic Pressure
in addition to
Maxwell Stress

Local Rate of Angular Momentum Transport Enhanced (by factor ~ 2)

Sharma, Hammett, Quataert, & Stone, 2005

The Bondi Numbers

$$\dot{M}_{Bondi} \approx 4\pi R_A^2 \rho c_s \mid_{R \approx R_A}$$

$$R_A \approx \frac{GM}{c_s^2} \approx 1$$
"

$$\dot{M}_{Bondi} \approx 10^{-5} M_8 \, \text{yr}^{-1}$$

3D Hydro Simulations yield similar accretion rates and suggest the flow circularizes at ~ 10³-10⁴ R_s

(Coker & Melia 1997; Cuadra et al. 2005)

1"
$$\approx 0.04 \text{ pc} \approx 10^5 \text{ R}_S \approx \text{R}_A$$

Hot
$$n(10") \approx 20 \text{ cm}^{-3}$$
 $T(10") \approx 1 \text{ keV}$
Gas $n(1") \approx 100 \text{ cm}^{-3}$ $T(1") \approx 2 \text{ keV}$